1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324 | /*
Arduino Code Example for the Serial-OSC-Bridge Plugin for QLC+
Copyright (c) House Gordon Software Company LTD
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.txt
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
The following pins are expected to be connected:
D2,D3,D4,D5 => 1x4 keypad matrix
D4 => Keypad 1
D5 => Keypad 2
D2 => Keypad 3
D3 => Keypad 4
D6 => ON/OFF Switch (lever)
D7 => ON/OFF Switch (lever)
D8 => ON/OFF Switch (lever)
D9 => ON/OFF Switch (black "0" and "1")
A0 => Slider (linear potentiometer, connected to 3.3V)
A1 => Slider (linear potentiometer, connected to 3.3V)
A2 => Slider (linear potentiometer, connected to 3.3V)
A3 => Slider (linear potentiometer, connected to 3.3V)
OSC Mapping:
The four on/off switches are broadcast as KNOBS (not buttons),
as "button" in OSC is a switch button with no state (e.g. toggle).
We send "0" for "off" and "255" for "on"
The values for the keypads don't matter, they are sent when pressed
(and not when released).
*/
#define VERSION "13"
//#define DEBUG_ASCII_COMMUNICATION
#define BAUD_RATE 115200
//#define DEBUG_ASCII_TABLE_OUTPUT
// To accomodate imprecise analog voltage reading on the edges,
// Clamp the analagRead() value to this range,
// Truncating the edge values (analogRead returns values between 0 and 1023
#define ANALOG_CLAMP_MIN 10
#define ANALOG_CLAMP_MAX 1010
// After 2 seconds of idleness (no slider/button pressed),
// send an update with all values, to ensure the PC is aware of the current
// values
#define IDLE_TIME_SEND_UPDATES_MS 2000
// Max/Min values are reversed (if the linear-potentiometers
// were wired backwards.
#define LINEAR_POTENTIOMETERS_REVERSED
void send_osc_bridge_frame_marker()
{
#ifndef DEBUG_ASCII_COMMUNICATION
static const unsigned char frame_marker[4] = {0x89, 0x98, 0x12, 0xAB} ;
Serial.write(frame_marker, 4);
#endif
}
// "num_sent" is the number of bytes ALREADY sent.
// e.g. if num_sent==11 , this function will send one additional NUL byte
// resulting in a 12 byte message (4-byte aligned in total).
void send_osc_zero_padding(unsigned int num_sent)
{
// Fall-through here is intentional, similar to https://en.wikipedia.org/wiki/Duff%27s_device .
// e.g. if the remainder is 1, three NUL bytes will be sent.
switch (num_sent % 4)
{
case 1: Serial.write(0x00);
/* FALLTHROUGH */
case 2: Serial.write(0x00);
/* FALLTHROUGH */
case 3: Serial.write(0x00);
}
}
void send_osc_simple_control_int(const String& address_prefix,
int control_number,
unsigned int value)
{
// Send the OSC Address - no sanity checks on the validity of the address...
size_t i = Serial.print(address_prefix);
i += Serial.print(String(control_number));
#ifndef DEBUG_ASCII_COMMUNICATION
send_osc_zero_padding(i);
#endif
// Send the OSC type.
//NOTE: "i/integer" in OSC protocol is a 32-bit integer
Serial.print(",i");
#ifndef DEBUG_ASCII_COMMUNICATION
send_osc_zero_padding(2);
#endif
#ifdef DEBUG_ASCII_COMMUNICATION
Serial.print(",value = ");
Serial.println(value);
#else
// Send the value.
// As AVR arduino 'int' is 16-bit, start with two NUL bytes to pad to 32 bit.
send_osc_zero_padding(2);
byte hi = value / 256;
byte lo = value % 256;
Serial.write(hi);
Serial.write(lo);
#endif
}
void setup()
{
Serial.begin(BAUD_RATE);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
Serial.print("Renert DMX Controller V");
Serial.println(VERSION);
pinMode(2, INPUT_PULLUP);
pinMode(3, INPUT_PULLUP);
pinMode(4, INPUT_PULLUP);
pinMode(5, INPUT_PULLUP);
pinMode(6, INPUT_PULLUP);
pinMode(7, INPUT_PULLUP);
pinMode(8, INPUT_PULLUP);
pinMode(9, INPUT_PULLUP);
}
int digital_pin_state[13]; // This assumes up to 13 digital pins base on standard arduino .
int analog_pin_state[7]; // This assumes up to 7 analog pins
unsigned long last_osc_send_time;
// For KeyPads, we send notification only WHEN PRESSED
// (the upstream software will treat them as toggles, and switch their state
// when pressed.
void send_keypad(int keypad, int raw_value)
{
int osc_num;
// The keypad matrix is connected to arduino Pull-up pin.
// The value will be ZERO if the button is pressed.
int new_val = !raw_value;
// We do not send notification when it is released...
if (new_val == 0) {
return ;
}
// Mapping from arduino hardware pin connection to logical OSC keypad value
// (same value as the digit printed on the 1x4 key matrix)
switch (keypad)
{
case 3: osc_num = 1; break;
case 4: osc_num = 2; break;
case 1: osc_num = 3; break;
case 2: osc_num = 4; break;
}
#ifndef DEBUG_ASCII_TABLE_OUTPUT
String osc_prefix = "/renert1/keypad/";
send_osc_simple_control_int(osc_prefix, osc_num, new_val ) ;
send_osc_bridge_frame_marker();
last_osc_send_time = millis();
#endif
}
void send_switch(int num, int raw_value)
{
int osc_num = num;
if (num == 3) {
// The 3rd switch is wired in reverse...
raw_value = !raw_value ;
}
int val = raw_value ? 0 : 255 ;
#ifndef DEBUG_ASCII_TABLE_OUTPUT
String osc_prefix = "/renert1/switch/";
send_osc_simple_control_int(osc_prefix, osc_num, val ) ;
send_osc_bridge_frame_marker();
last_osc_send_time = millis();
#endif
}
void check_digital_pin(int pin)
{
int new_val = digitalRead(pin);
if (new_val == digital_pin_state[pin]) {
// Same value as before - no need to update anything
return;
}
digital_pin_state[pin] = new_val;
//All digital inputs are Pull-ups, reading "1" if NOT pressed,
//and "0" if pressed (and thus shorted to GND).
if (pin >= 2 && pin <= 5) {
send_keypad (pin - 1, new_val);
} else {
send_switch ( pin - 5, new_val);
}
}
void send_analog_pin(int pin, int new_val)
{
#ifndef DEBUG_ASCII_TABLE_OUTPUT
String osc_prefix = "/renert1/fader/";
int osc_num = pin - A0 + 1 ;
#ifdef LINEAR_POTENTIOMETERS_REVERSED
int send_value = 255 - new_val ;
#else
int send_value = new_val ;
#endif
send_osc_simple_control_int(osc_prefix, osc_num, send_value) ;
send_osc_bridge_frame_marker();
last_osc_send_time = millis();
#endif
}
void check_analog_pin(int pin)
{
int new_val = analogRead(pin);
#ifdef DEBUG_ANALOG_READ
Serial.print("analogRead(");
Serial.print(pin);
Serial.print(")=");
Serial.println(new_val);
#endif
new_val = constrain(new_val, ANALOG_CLAMP_MIN, ANALOG_CLAMP_MAX);
new_val = map(new_val, ANALOG_CLAMP_MIN, ANALOG_CLAMP_MAX, 0, 255);
int diff = analog_pin_state[pin - A0] - new_val ;
if (abs(diff) <= 3) {
// Same value as before - no need to update anything
return;
}
analog_pin_state[pin - A0] = new_val;
send_analog_pin(pin, new_val);
}
void serial_pretty_print_num(byte b)
{
if (b < 100)
Serial.print('0');
if (b < 10)
Serial.print('0');
Serial.print(b);
}
bool send_idle_time_refresh()
{
int i;
unsigned long curr = millis();
if ( (curr - last_osc_send_time) > IDLE_TIME_SEND_UPDATES_MS ) {
for (i=0;i<4;++i)
send_analog_pin( A0 + i, analog_pin_state[i] ) ;
for (i=6;i<=9;++i)
send_switch (i-5, digital_pin_state[i] ) ;
// Don't send the 'keypad' values:
// While the sliders and up/down switches have STATE (i.e. current value)
// The keypad event is an "ACTION" by itself - we don't want to trigger the action.
last_osc_send_time = millis();
return true;
}
return false;
}
void loop()
{
while (1) {
for (int i = 2; i <= 9; ++i) {
check_digital_pin(i);
}
for (int i = 0; i <= 3; ++i) {
check_analog_pin(A0 + i);
}
#ifdef DEBUG_ASCII_TABLE_OUTPUT
serial_pretty_print_num(analog_pin_state[0]);
Serial.print(' ');
serial_pretty_print_num(analog_pin_state[1]);
Serial.print(' ');
serial_pretty_print_num(analog_pin_state[2]);
Serial.print(' ');
serial_pretty_print_num(analog_pin_state[3]);
Serial.println();
#endif
if (!send_idle_time_refresh())
delay(2);
}
}
|